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The converging shock problem was first solved by Guderley and 
later by Landau and Stanyuk~vich for infinitely strong shocks 
in an ideal gas with spherical and cylindrical symmetry. This 
problem is solved herein for finite-strength shocks and a non- 
ideal-gas equation of state with an adiabatic bulk modulus of 
the type B = -v~p/~vI~ = (p + B)f(v), where B is a constant 
with the dimensions of pressure, and f(v) is an arbitrary func- 
tion of the specific volume. Self-similar profiles of the par- 
ticle velocity and thermodynamic variables are studied explic- 
itly for two cases with constant specific heat at constant 
volume; the Tait-Kirkwood-Murnaghan equation, f(v) = constant, 
and the Walsh equation, f(v) = v/A, where A = constant. The 
first case reduces to the ideal gas when B = 0. In both cases 
the flow behind the shock front exhibits an unbalanced buoyant 
force instability at a critical Mach number which depends upon 
equation-of-state parameters. 

INTRODUCTION 

The convergence of a strong shock in a perfect gas is a well-known problem in hy- 
drodynamics. The shock profile is self-similar when the shock front propagates at 
infinite Mach number into a uniform perfect gas at rest in spherical or cylindrical 
geometry. When the density ahead of the shock is a power-law function of the radius, 
the shock convergence problem is also self-similar in the limit of infinite Mach 
number; see Chernous'ko ~1960). 

Here we solve the shock convergence problem for an arbitrary Mach number and for 
more general equations of state than that of the ideal gas. The solutions give the 
rate of approach to the asymptotic solution as well as the dependence of the shock 
motion and profile upon the equation of state. A remarkable result is that the flow 
behind the shock goes unstable at a critical Mach number even for perfect spherical 
symmetry. This critical Mach number depends on the equation of state of the medium. 
The instability itself is driven by unbalanced buoyant forces. 

The key ideas for the solution are Lie-group invariance and parametric separation of 
variables. The scale transformations which determine self-similar motions are Lie- 
group operations. Birkhoff (1950) first applied group theory to find invariant 
solutions of Euler's equations. Subsequently, several others, for example, Ovsjan- 
nikov (1962), Michal (1951), and Miiller and Matschat (1962) have refined Lie's 
original method of integration of differential equations by group theoretical tech- 
niques. 

Adiabatic fluid motion is governed by Euler's equations which contain three inde- 
pendent dimensions, mass, length, and time. They can admit three independent scale 
transformations. Self-similar shock motions utilize all three independent choices of 
scale. One choice is fixed by the initial density ahead of the shock. Another is de- 
termined by the numerical solution for the similarity exponent. This also determines 
the shock trajectory in space-time and the shape of the flow behind the shock. The 
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remaining choice of scale can be used to determine by a scale transformation the 
profile at a later time from its profile at an earlier time. Self-similar motions 
in one dimension satisfy ordinary differential equations in scale-invariant varia- 
bles rather than partial differential equations in space and time. They are impor- 
tant physically because they represent asymptotic states of motion which occur when 
the fluid is no longer strongly influenced by its initial conditions. 

Self-similar motions are not possible for arbitrary equations of state. Generally, 
the bulk modulus, Bs(p,v), in terms of which Euler's equations can be written, re- 
moves some scale freedom by connecting the pressure p with the specific volume v. 
Initial and boundary conditions also tend to remove scale freedom by introducing 
characteristic dimensions. 

Lie-group invariance can be used to determine forms of the equation of state for 
which self-similar solutions of Euler's equations will exist. The equations of state 
determined from the Lie-group invariance condition include a class of Mie-Gr~neisen 
equations for which the temperature and volume dependence of the free energy is sep- 
arable additively. Thus, the theory applies to solids, for example, at shock pres- 
sures well above the yield stress, but at ~ompresSions where the volume dependence 
of the specific heat is negligible. 

Self-similar solutions for converging shocks in media with more general equations of 
state than that of the ideal gas have been found by Axford and Holm (1978) for the 
case of shocks with infinite strength. In the present study quasi-similar solutions 
for converging spherical and cylindrical shocks with finite strength in media de- 
scribed by the Walsh form of the adiabatic bulk modulus are obtained for a range of 
material parameters and shock-front Mach numbers. 

The occurrence of the Mach number in the shock front boundary conditions would seem 
to preclude a self-similar reduction for an arbitrary Mach number. However, an ap- 
proximate separation of the similarity variable from the Mach number does occur be- 
cause the shock boundary data is specified along a noncharacteristic constant value 
of the similarity variable with Mach number as a parameter. This separation leads 
to a self-similar reduction at each value of the Mach number that was discussed for 
the ideal gas first by Oshima (1960) and later by Lee (1967). The solution from this 
parametric self-similar reduction is a generalization of the Guderley solution to in- 
clude Mach-number dependence. As in the Guderley solution, there is a critical sonic 
line which determines the similarity eigenvalue at each Mach number. Because this 
critical-point structure of the solution persists for an arbitrary Mach number, the 
limit to the Guderley solution is uniform. 

In the following we first state the problem and describe the method of approach. Re- 
sults from an invariance analysis of Euler's equations are summarized next. These re- 
sults are then used to determine equations of state for which self-similar solutions 
exist. Two such equations of state are those of Tait-Kirkwood-Murnaghan (see Mac- 
Donald (1969)) and of Walsh (1961), which have been used previously as empirical in- 
terpolation functions without the realization that self-similar solutions exist for 
them. After these equations of state are identified, the quasi-similar reduction of 
Euler's equations is discussed, and the numerical method used to solve the quasi- 
similar problem is described. In the last section numerical results are given. 

STATEMENT OF PROBLEM AND THE GEOMETRIC APPROACH TO ITS SOLUTION 

Consider the problem of the spherical or cylindrical convergence of a shock wave to 
the center of a uniform stationary material. The initial conditions ahead of the 
shock are 

P = Po' P = Po' u = 0. (I) 

At the shock front the boundary conditions are given by the Rankine-Hugoniot jump 
conditions, which, with D the shock front velocity and E the specific internal ener- 
gy, are 

u/D = 1 - V/Vo, (2) 
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P - Po = OoUD' (3) 

and 

E - E ° = (p + po)(Vo - v)/2 = u2/2 + Po(Vo - v). (4) 

The terms in Po are ignored in the case of a strong shock. 

In the absence of viscosity and heat transfer, the motion of the shock front and the 
flow behind the shock are governed by Euler's equations. These are the continuity 
equation, 

dp/dt + p(u r + su/r) = 0, (5) 

the equation of motion, 

du/dt + pr/p = 0, (6) 

and the energy or entropy equation, 

dp/dt + Bs(p,p)(u r + su/r) = 0, (7) 

where r is the spatial coordinate, d../dt is the substantial time derivative, and 
s = 0,1,2 is the usual geometrical factor. 

The pressure-volume response of the material is described by the adiabatic bulk 
modulus defined by 

Bs(P ,V)  = - v ~ p / S V ] s .  (8) 

The e q u a t i o n  o f  s t a t e  e n t e r s  t h e  f o r m u l a t i o n  t h r o u g h  t h e  a d i a b a t i c  b u l k  modulus  i n  
( 8 ) .  When w r i t t e n  i n  t e r m s  o f  a g e n e r a l  a d i a b a t i c  b u l k  m o d u l u s ,  an i n v a r i a n c e  a n a l y -  
s i s  l e a d s  t o  t h e  c o n s t r u c t i o n  o f  s e l f - s i m i l a r  s o l u t i o n s  and  o t h e r  t y p e s  o f  i n v a r i a n t  
s o l u t i o n s  f o r  s h o c k s  i n  med ia  o t h e r  t h a n  an i d e a l  g a s .  We s e e k  f u n c t i o n a l  fo rms  o f  
t h e  a d i a b a t i c  b u l k  modulus  f o r  w h i c h  E u l e r ' s  e q u a t i o n s  a d m i t  t h e  maximal  g roup  o f  
p o i n t  t r a n s f o r m a t i o n s .  

INVARIANCE PRINCIPLES FOR EULER'S EQUATIONS 

E u l e r ' s  e q u a t i o n s  (5) t o  (7) a d m i t  a t h r e e - p a r a m e t e r  s u b g r o u p  o f  s c a l e  t r a n s f o r m a -  
t i o n s  g e n e r a t e d  by  t h e  o p e r a t o r ,  

Qop = (2al + a3)r~r + (al + a3)t3t + alU~u + (a2 - 2al)PBp + a2(P + B)~p, (9) 

provided that the adiabatic bulk modulus satisfies the condition, 

a2( p + B)3Bs/8 p + (a 2 2al)P3Bs/3 P - a2B s = 0, (I0) 

where B is a constant with units of pressure. The general solution of (i0) is 

B (p,p) = (p + B)f[(p + B) 1 - 2al/a2/p], (ii) 
s 

where f is an arbitrary function of the indicated argument. When the adiabatic bulk 
modulus has this form, three independent scale transformations are admitted by 
Euler's equations, which are also invariant under time translations, since the in- 
dependent variable t does not appear explicitly in the system. The time origin can 
be chosen arbitrarily. In planar geometry invariance under spatial displacements and 
Galilean transformations would also occur. In more spatial dimensions rigid rota- 
tions of all vectors would be admitted. 

A relation must be imposed in Qop' namely, 

a 2 2a I = O, (12) 

in order for the initial condition ahead of the shock to be invariant. In this case 
the adiabatic bulk modulus for self-similar shock propagation into a uniform medium 
assumes the separable form, 

B s ( p , p )  = (p + B ) f ( p ) ,  (13) 

in which f(p) is an arbitrary function of the density. Such equations for the adi- 
abatic bulk modulus have been used previously as interpolation functions in shock- 
wave physics. Two choices for f(p) are well-known; for the TKM equation, we have 
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f(p) = constant = 1/(APo) = r, (14) 

and for the Walsh equation we have 

f(p) = const./p = 1/Ap = FPo/p. (15) 

The Walsh equation for the adiabatic bulk modulus has the additional advantage that 
it is consistent with the experimentally observed linear relation between the shock 
speed D and the particle speed u behind the shock, namely, 

D = c + SHU , (16) 

which is true for plate-impact experiments in which the shock pressure is greater 
than approximately fifty kilobars. In terms of the parameters in (16), the constants 
A and B in the Walsh form for the adiabatic bulk modulus are given by 

A = Vo/4S H = 1/4SHP o, B = PoC2/4SH . (17) 

For metals the number s H is typically about 1.25, and the number c is roughly equal 
to the speed of sound. 

CONSTRUCTION OF SIMILARITY VARIABLES AS GROUP INVARIANTS 

Euler's equations can be reduced to a system of three nonlinear ordinary differen- 
tial equations by a transformation of the variables to the invariant coordinates of 
the operator Qop' which are solutions of the linear partial differential equation, 

Qopf(r,t,u,p,p) = 0. (18) 

In general, the solution of such a first order partial differential equation'in- 
volves arbitrary functions of the functionally independent integrals of the set of 
characteristic equations, In our case these arbitrary functions can be taken as new 
dependent variables in Euler's equations whose solutions are restricted to invari- 
ant surfaces. The flow variables that are determined from the independent group 
invariants are as follows; 

X = r/t ~, u = (r/t)Us(X), p = PoRs(X), p + B = (r/t)2poPs(X), (19) 

where the exponent ~ is given by 

= (2a I + a3)/(a I + a3) , (20) 

and the value of the time is taken to be negative before the collapse and.to vanish 
when the shock reaches the center. 

Upon the substitution of the self-similar flow variables into Euler's equations, a 
coupled set of three nonlinear ordinary differential equations in X remains to be 
integrated. The initial and boundary conditions for this system will be invariant 
if the shock trajectory follows the path represented by 

rH(t ) = const, t ~, (21) 

and also if the initial density distribution is uniform, namely, 

p(x,O)  = Po" (22) 

Details of the self-similar shock convergence problem for shocks with infinite 
strength in media described by a Walsh adiabatic bulb modulus have been reported by 
Axford and Holm (1978). In the next section we shall discuss an approximate solution 
for converging shocks with finite strength that limits to the infinite strength case 
as the Mach number of the shock front approaches infinity. 

QUASI-SIMILAR FLOWS FOR FINITE-STRENGTH SHOCKS 

For a finite-strength shock the shock-front Mach number and the similarity exponent 
are interconnected and depend upon time. The finite-strength jump conditions depend 
upon the Mach number of the shock front relative to the speed of sound in the mater- 
ial ahead of the shock. This Mach number changes with time along the curved shock 
trajectory r. (t). Thus, in a self-similar solution the similarity exponent depends 

H . . . .  
upon the shock-front Mach number through the jump condltlons, whlch are boundary 
conditions for the flow behind the shock. 
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and 

and define the vector v as 

An approximate solution, in which a finite-strength shock would follow a series of 
instantaneously self-similar states, can be sought. In this solution the Mach num- 
ber of the shock front enters parametrically, and the problem can be solved by a 
series of self-similar steps. The approximate solution is of self-similar form, but 
it is rescaled with the shock-front Mach number to match the finite jump conditions 
at the shock front. The compression, for example, is of the form, 

P/Po = RI(X)R2(M)' X = r/t ~(M), (23) 

where the Mach-number-dependent scale factor, R~(M), is the ratio of the Rankine- 
Hugoniot conditions for finite and infinite Mac~ numbers which limits to unity from 
below as the Mach number approaches infinity. In the case of an ideal gas we have 

R2(M) = (y - 1 ) / ( y  - 1 + 2/M2),  (24) 

where y is the specific heat ratio. When trial solutions of the factorized form for 
the dependent variables are substituted into Euler's equations, these equations re- 
duce to ordinary differential equations in X with the Mach number as a parameter. 
The factorized approximate solution affords a self-similar reduction for each value 
of the shock-front Mach number. A similarity exponent can be obtained that corre- 
sponds to the Mach number of the shock front located at a given position. This sim- 
ilarity exponent can then be used to determine the Mach number and position of the 
shock front at a slightly later time. This procedure can be iterated to follow the 
evolution of a converging flow through a series of instantaneously self-similar 
states. Such a solution can be regarded only as an approximate solution because it 
is strictly valid only near the shock front, since the Mach-number dependence orig- 
inates in the jump conditions. However, a general solution would be expected to e- 
volve toward a self-similar solution asymptotically. Approximate solutions of the 
type under consideration were first proposed by Oshima (1960) to include counter- 
pressure in the analysis of a blast wave and were called by him quasi-similar solu- 
tions. Later, Rae (1970) and Lee (1967) investigated aspects of quasi-similar solu- 
tions for converging shocks and detonations in an ideal gas. 

Quasi-similar solutions for the two non-ideal-gas equations of state considered 
herein are calculated from the change of variables that follows. Euler's equations 
for these equations of state assume the form, 

dp/dt + p(u r + su/r) = 0, (25) 

du/dt + pr/p = 0, (26) 

and 

pdp/dt + P(p + B)(po/p) w - l(u r + su/r) = 0, (27) 

where s = I or 2 for cylindrical or spherical geometry, respectively, and w = 1 or 
2 for the TKM or the Walsh equation of state, respectively. Let us define new inde- 
pendent variables by 

z = r/rH(t), M = ~H/Co, (28) 

where r (t) is the shock-front locus to be determined, and the shock-front Mach num- 
ber M i~ taken relative to the speed of sound c in the medium ahead of the shock. 
The self-amplification coefficient defined by o 

,. .2 
@(t) = rHrH/r H = d~n M/d£n r H (29) 

is a function of the time, or Mach number of the shock front, alone. To transform 
dependent variables, set 

p = PoR(Z,M), (30) 

u = c MzX(z,M), (31) 
O 

p + B = Po c~M2z2Y(z'M)'u (32) 

V - -  
n 

(33) 
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Then,with x = gn(z) and y = gn(Ml/@), Euler's equations take the normal character- 
istic form with the components defined as 

i " " 
Vy + A~(v)v3 x = Ki(v), (34) 

where the matrix At(v) and the right-hand side of (34) are given explicitly by 
3 -- 

I 
X- 1 R 0 ] 

A~(v) = 0 X - 1 Z/R (351 
J 

0 FY/R w-1 X -  1 
and 

(s + llXR 
-Ki(v) = ex + x(x - I) + 2Y/R | , (36) 

2@Y + 2(X - i) + (s + I)FYX/RW-I/" 

and we sum over repeated indices. 

The characteristic directions of the transformed Euler equations are found from 

det[A~(v) -dx/dy6~] = O. (37) 

Since Euler's equations are hyperbolic, there are three characteristic directions, 
which are defined by 

dx/dy = X - i, dx/dy = X - 1 + Y~/R w. (38) 

These characteristics correspond to particle trajectories and incoming and outgoing 
sonic lines. They also correspond to roots of 

A ° = d e t  A i ( v )  = 0 ,  ( 3 9 )  j - -  

which determine the critical points of the quasi-similar solutions at a given Mach 
number of the shock front. 

To obtain the quasi-similar type of solution a factorization ansatz is made for 
each component of the vector v; that is, we write 

v i(y,x) = v i(y,0)v i(-oo,x)/v i(-c°,O), (40) 

where the Rankine-Hugoniot conditions for a finite Mach number of the shock front 
are given by 

lim vi(y,x) = vi(y,O), (41) 
x÷0 

and the truly self-similar solution is contained in the limit, 

lim v i(y,x) = v i(-°°,x), (42) 
y-+_ co 

for an infinite .Mach number . Under this factorization ansatz the transformed Euler 
equations reduce to ordinary differential equations, namely, 

A~(v)dvJ/dx = K i - D~(y)v j, (43) 

where DX.(y) is a diagonal matrix that takes the values which follow. For the Walsh 
form of Jthe adiabatic bulk modulus, with the definitions, 

= (i + 6)/M 2, 6 = po/(Po + B), (44) 

we have 

DII(E) = -4E/(F - 2 + 2¢), 

D 2 2 ( e )  = - 2 ¢ / ( 1  - e ) ,  
and 

D33(c1 = - W ( 1  - c / 2 ) ,  

together with the Walsh boundary conditions, 

R ( z = I , M )  = ( - 2 / F  + 2 e / F )  

(451 

( 4 6 )  

( 4 7 )  

-I 
, ( 4 8 1  
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X(z=I,M) = 2(1 - e)/F, (49) 
and 

Y ( z = I , M )  = 2(1 - ~ / 2 ) / r .  (50) 

For the TKM form of the adiabatic bulk modulus, with the definition, 

~' = 1/M 2, ( 5 t )  

the diagonal matrix elements are given by 

D11(g '  ) = - 4 g ' / ( F  - 1 + 2 ¢ ' ) ,  (52) 

and D 2 2 ( ~ ' )  = - 2 ~ ' / ( 1  - ~ ' ) ,  (53)  

D33(E' ) = - g ' / ( F / ( F -  1) e ' / 2 ) ,  (54) 

and the corresponding TKM boundary conditions are given by 

R(z= I ,M)  = ( r  + 1 ) / ( F  - 1 + 2 e ' ) ,  (55) 

X ( z = I , M )  = 2(1 - E , ) / ( r  + 1 ) ,  (56) 
and 

Y(z=I,M) = 2(1 - (F - I)e'/2F)/(F + i). (57) 

After this quasi-similar reduction to ordinary differential equations, the remain- 
ing part of the solution follows the method used for predicting the motions of self- 
similar collapsing shocks. That is, each of the derivatives 

dvl/dx = Ai/A ° (58) 

where A is defined in (39), is found with Cramer's rule, which defines the three 
additional determinants denoted by A.. The differential equations (58) are then 

• . 1 . 

integrated numerically with a fourth or fifth order Runge-Kutta algorithm. 

NUMERICAL METHOD OF SOLUTION 

As in the Guderley solution only two of the four determinants A0, At, A2, A3 are 
linearly independent. Therefore, the critical-point nature of the true self-similar 
solution is preserved by the quasi-similar transformation, and the similarity expon- 
ent for each value of the shock-front Mach number is determined from the existence 
of a critical sonic line that follows the shock front. Accordingly, the similarity 
exponents are computed as functions of both material parameters, for example, F as 
defined in (15), and the Mach number of the shock front. 

The numerical criterion for the determination of correct values of the similarity 
exponent originates in the linear dependence of any two of the four determinants 
A0, At, A2, A3 upon the other two. For specified values of the material parameters 
and the shock-front Mach number the corresponding value of the similarity exponent 
is found by a computer interactive shooting method in which the locus of the plot 
of A0 versus At is required to pass within a specified distance of the origin. To 
ensure that this locus passes within I0- units of the origin requires that the 
value of the similarity exponent sought be determined to a precision of seven figures 

NUMERICAL RESULTS 

Numerical values of the similarity exponent for fourteen values of the shock-front 
Mach number are given in Table 1 for spherically collapsing shocks and in Table 2 
for cylindrically collapsing shocks in media described by the Walsh form of the adi- 
abatic bulk modulus. These numerical values were computed with the trial-and-error 
procedure discussed in the previous section. In the limit of a very large value of 
the shock-front Mach number, say I0000, the values of the similarity exponents shown 
in Tables i and 2 have been found to agree with those values computed with a separ- 
ate code which was written for the infinite shock-strength case in which the shock- 
front Mach number does not appear as a parameter as it does in the finite shock- 
strength case. 

The results that are presented in Tables 1 and 2 provide the data required to take 
into explicit account the effect of finite-shock strengths in relating two positions 
of the shock front during the process of convergence. From the definition of the 
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self-amplification coefficient given in (29), it follows directly that 

drH/r H = dM/gM. (59) 

Consequently, the integral in 
M 

rH/rHi = expf (M'O)-IdM ', (60) 
J M. 

of a shock front wlth the Mach number M., can be where r H. is the initial position i 
evaluate~ numerically to give the shock-front position corresponding to the Mach 
number M. 

Pressure, density, and velocity profiles can be obtained easily with the similarity 
exponents given in Tables 1 and 2. Because of space limitations in the present paper 
we shall present elsewhere numerical results for the similarity exponents for media 
with the TKM form of the adiabatic bulk modulus, explicit shock trajectories and 
profiles, and a discussion of the stability properties of flows in media with a 
Walsh and with a TKM form of the adiabatic bulk modulus. 

Table 1. Variation of the similarity exponent with the shock-front 
Mach number for spherically collapsing shocks in media 
with a Walsh adiabatic bulk modulus. 

M+ 

i0000.00 
I00.00 
I0.00 
4.47 
3.16 
2.24 
1.83 
1.58 
1.41 
1.29 
1.20 
1.12 
1.05 
1.03 

Table 2. 

SIMILARITY EXPONENT ~(M,F) 
F=8.0 
.6174999 
6175324 
6207583 
6338886 
6505163 
6844786 
7193817 
7552483 
7921338 
.8301372 
.8694230 
.9102782 
.9532780 
.9759736 

F=5.0 
.6512684 
.6512931 
.6537491 
.6639045 
.6771068 
.7051091 
7350854 
7668846 
8004175 
8356759 
8727576 
9119233 
9537683 
9761160 

r=3.0 
.7548466 
.7548406 
.7544191 
.7536002 
.7544990 
.7619652 
.7759424 
.7954111 
.8195537 
.8477553 
.8796416 
.9151370 
.9546700 
•9763739 

Variation 0f the similarity exponent with the shock-front 
Mach number for cylindrically collapsing shocks in media 
with a Walsh adiabatic bulk modulus. 

SIMILARITY EXPONENT ~(M,P) 
M+ 

P = 8•0 P = 5.0 P = 3.0 
• 7578689 .7858619 .8584830 I0000.00 

I00 00 
i0 00 
4 47 
3 16 
2 24 
3 83 
1,58 
1,41 
1.29 
1.20 
I~12 
1,05 
1.03 

.7578937 

.7603517 

.7702659 

.7826190 
,8071884 
,8315728 
8557785 
8798233 
903735J 
9275793 
9514327 
9754612 
.9876331 

.7858800 

.7876845 

.7950779 

.8045347 
,8240716 
.8442980 
,8650806 
8863266 
9079865 
9300581 
9526016 
9757820 
9877184 

In the evaluation of (60) with these two tables, the relatlon 

@ = 1 - i/~ 

.8584804 

.8582484 

.8578996 

.8586926 
•8638262 
.8728756 
.8850401 
.8996954 
.9163796 
.9347848 
.9547617 
.9763599 
.9878719 

between the self-amplification coefficient and similarity exponent is used. 

(61) 
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